623 research outputs found

    An optoelectronic framework enabled by low-dimensional phase-change films.

    Get PDF
    Accepted author version. The definitive version was published in: Nature 511, 206–211 (10 July 2014) doi:10.1038/nature13487The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states--amorphous and crystalline--in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young's modulus. The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films. This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent 'smart' glasses, 'smart' contact lenses and artificial retina devices.Engineering and Physical Sciences Research Council (EPSRC)OUP John Fell Fun

    Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize

    Get PDF
    International audienceSelenium is a micronutrient needed by all living organisms including humans, but often present in low concentration in food with possible deficiency. From another side, at higher concentrations in soils as observed in seleniferous regions of the world, and in function of its chemical species, Se can also induce (eco)toxicity. Root Se uptake was therefore studied in function of its initial form for maize (Zea mays L.), a plant widely cultivated for human and animal food over the world. Se phytotoxicity and compartmentalization were studied in different aerial plant tissues. For the first time, Se oral human bioaccessibility after ingestion was assessed for the main Se species (SeIV and SeVI) with the BARGE ex vivo test in maize seeds (consumed by humans), and in stems and leaves consumed by animals. Corn seedlings were cultivated in hydroponic conditions supplemented with 1 mg L−1 of selenium (SeIV, SeVI, Control) for 4 months. Biomass, Se concentration, and bioaccessibility were measured on harvested plants. A reduction in plant biomass was observed under Se treatments compared to control, suggesting its phytotoxicity. This plant biomass reduction was higher for selenite species than selenate, and seed was the main affected compartment compared to control. Selenium compartmentalization study showed that for selenate species, a preferential accumulation was observed in leaves, whereas selenite translocation was very limited toward maize aerial parts, except in the seeds where selenite concentrations are generally high. Selenium oral bioaccessibility after ingestion fluctuated from 49 to 89 % according to the considered plant tissue and Se species. Whatever the tissue, selenate appeared as the most human bioaccessible form. A potential Se toxicity was highlighted for people living in seleniferous regions, this risk being enhanced by the high Se bioaccessibility

    E. coli promotes human Vγ9Vδ2 T cell transition from cytokine-producing bactericidal effectors to professional phagocytic killers in a TCR-dependent manner

    Get PDF
    γδT cells provide immune-surveillance and host defense against infection and cancer. Surprisingly, functional details of γδT cell antimicrobial immunity to infection remain largely unexplored. Limited data suggests that γδT cells can phagocytose particles and act as professional antigen-presenting cells (pAPC). These potential functions, however, remain controversial. To better understand γδT cell-bacterial interactions, an ex vivo co-culture model of human peripheral blood mononuclear cell (PBMC) responses to Escherichia coli was employed. Vγ9Vδ2 cells underwent rapid T cell receptor (TCR)-dependent proliferation and functional transition from cytotoxic, inflammatory cytokine immunity, to cell expansion with diminished cytokine but increased costimulatory molecule expression, and capacity for professional phagocytosis. Phagocytosis was augmented by IgG opsonization, and inhibited by TCR-blockade, suggesting a licensing interaction involving the TCR and FcγR. Vγ9Vδ2 cells displayed potent cytotoxicity through TCR-dependent and independent mechanisms. We conclude that γδT cells transition from early inflammatory cytotoxic killers to myeloid-like APC in response to infectious stimuli

    Corneal Alternations Induced by Topical Application of Benzalkonium Chloride in Rabbit

    Get PDF
    Benzalkonium chloride (BAC) is the most common preservative in ophthalmic preparations. Here, we investigated the corneal alternations in rabbits following exposure to BAC. Twenty-four adult male New Zealand albino rabbits were randomly divided into three groups. BAC at 0.01%, 0.05%, or 0.1% was applied twice daily to one eye each of rabbits for 4 days. The contralateral untreated eyes were used as control. Aqueous tear production and fluorescein staining scores of BAC-treated eyes were compared with those of controls. The structure of the central cornea was examined by in vivo confocal microscopy. Expression of mucin-5 subtype AC (MUC5AC) in conjunctiva was detected by immunostainig on cryosections. Corneal barrier function was assessed in terms of permeability to carboxy fluorescein (CF). The distribution and expression of ZO-1, a known marker of tight junction, and reorganization of the perijunctional actomyosin ring (PAMR) were examined by immunofluorescence analysis. Although there were no significant differences between control and BAC-treated eyes in Schirmer scores, corneal fluorescein scores and the number of conjunctival MUC5AC staining cells, in vivo confocal microscopy revealed significant epithelial and stromal defects in all BAC-treated corneas. Moreover, BAC at 0.1% resulted in significant increases in central corneal thickness and endothelial CF permeability, compared with those in control eyes, and endothelial cell damage with dislocation of ZO-1 and disruption of PAMR. Topical application of BAC can quickly impair the whole cornea without occurrence of dry eye. A high concentration of BAC breaks down the barrier integrity of corneal endothelium, concomitant with the disruption of PAMR and remodeling of apical junctional complex in vivo

    Improving detection and notification of tuberculosis cases in students in Shaanxi province, China: an intervention study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cooperation between different public and private health institutes involved in tuberculosis (TB) control has proven to enhance TB control in different settings. In China, such a mechanism has not been set up yet between Centers for Disease Control (CDCs) and university hospitals despite an increased TB incidence among students. This study aims to improve arrival of TB suspects identified by universities at the CDCs in order to manage them under standardized, directly observed treatment-short course (DOTS) conditions according to the National Tuberculosis Programme (NTP) guidelines.</p> <p>Methods</p> <p>Five matched pairs of universities were randomly assigned to the control and intervention group. After a baseline survey, a cooperation mechanism between local CDCs and university hospitals was set up in the intervention group. The effects on referral of TB suspects to the local CDC, tracing by the local CDC, and arrival at the local CDCs were assessed. Differences were tested by means of the chi-square test.</p> <p>Results</p> <p>During the baseline survey, the referral, tracing and arrival rates were between 37% and 46%. After implementation of the cooperation mechanism, these rates had not changed in the control group but increased significantly in the intervention group: the referral, tracing and arrival rates were 97%, 95%, and 93%, respectively.</p> <p>Conclusions</p> <p>It is feasible and effective to set up cooperation between CDCs and university hospitals to increase the number of TB suspects examined by CDCs and increase the number of TB patients treated under DOTS conditions. These public-public mix (PPM) activities should be expanded to cover all other university hospitals in China.</p

    Association of Adiponectin SNP+45 and SNP+276 with Type 2 Diabetes in Han Chinese Populations: A Meta-Analysis of 26 Case-Control Studies

    Get PDF
    Recently, many studies have reported that the SNP+45(T>G) and SNP+276(G>T) polymorphisms in the adiponectin gene are associated with type 2 diabetes (T2DM) in the Chinese Han population. However, the previous studies yielded many conflicting results. Thus, a meta-analysis of the association of the adiponectin gene with T2DM in the Chinese Han population is required. In the current study, we first determined the distribution of the adiponectin SNP+276 polymorphism in T2DM and nondiabetes (NDM) control groups. Our results suggested that the genotype and allele frequencies for SNP+276 did not differ significantly between the T2DM and NDM groups. Then, a meta-analysis of 23 case-control studies of SNP+45, with a total of 4161 T2DM patients and 3709 controls, and 11 case-control studies of SNP+276, with 2533 T2DM patients and 2212 controls, was performed. All subjects were Han Chinese. The fixed-effects model and random-effects model were applied for dichotomous outcomes to combine the results of the included studies. The results revealed a trend towards an increased risk of T2DM for the SNP+45G allele as compared with the SNP+45T allele (OR = 1.34; 95% CI, 1.11–1.62; P<0.01) in the Chinese Han population. However, there was no association between SNP+276 and T2DM (OR = 0.90; 95% CI, 0.73–1.10; P = 0.31). The results of our association study showed there was no association between the adiponectin SNP+276 polymorphism and T2DM in the Yunnan Han population. The meta-analysis results suggested that the SNP+45G allele might be a susceptibility allele for T2DM in the Chinese Han population. However, we did not observe an association between SNP+276 and T2DM

    Male Germ Cell Apoptosis and Epigenetic Histone Modification Induced by Tripterygium wilfordii Hook F

    Get PDF
    Multiglycosides of Tripterygium wilfordii Hook f (GTW), a Chinese herb-derived medicine used as a remedy for rheumatoid arthritis, are considered to be a reversible anti-fertility drug affecting the mammalian spermatids. However, the mechanism behind this effect is still unknown. To study the possible mechanism behind the impact of GTW on spermatogenesis, we administered 4 groups of 4-week-old male mice with different doses of GTW. We found a dose-dependent decrease in the number of germ cells after 40 days of GTW treatment, and an increase in apoptotic cells from the low-dose to the high-dose group. During this same period the dimethylated level of histone H3 lysine 9 (H3K9me2) in GTW-treated testes germ cells declined. Additionally, spermatogonial stem cells (SSCs) from 6-day-old mice were isolated to evaluate the possible effect of GTW or triptolide on development of SSCs. We found a significantly higher incidence of apoptosis and lower dimethylation level of H3K9me2 in the SSCs of GTW or triptolide treatment than in controls. Thus, these data suggest that the GTW-induced apoptosis might be responsible for the fertility impairment in mice. This damage could be traced back to the early stages of spermatogenesis. GTW also affected the epigenetic modification of H3K9 in spermatogenesis. Molecular dynamics simulation suggested that triptolide and dimethylated or trimethylated H3K9 might have similar interaction mechanisms with EED (embryonic ectoderm development). These candidate activation mechanisms provide the first glimpse into the pathway of GTW-induced gonad toxicity, which is crucial for further research and clinical application
    corecore